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Section 1 
Introduction 

The purpose of this report is to provide a reference manual that can be used by investigators for 
making informed use of logistic regression using two statistical methods (standard logistic regression and 
Multivariate Adaptive Regression Splines (MARS)). The details for analyses of relationships between a 
dependent binary response variable (e.g., presence/absence) and a set of independent variables are 
provided step-by-step for use by scientists who are not statisticians.  Details of such statistical analyses 
and their assumptions are often omitted from published literature, yet such details are essential to the 
proper conduct of statistical analyses and interpretation of results.  In this report, we use a data set for 
amphibian presence/absence and associated habitat variables as an example. 

Relationships between a response variable and independent variable(s) are commonly quantified and 
described by regression models.  The values of the coefficients and predictions from the fitted model are 
used to infer and describe patterns of relationships, the effect of the independent variables on the 
response, and the strength of association between the independent and response variable.  All these will 
help to analyze and understand a phenomenon, in this case biological phenomena.  The general linear 
model (GLM) offers a wide range of regression models where the simple regression, analysis of 
covariance, and ANOVA are special cases. In GLM, the functional relationships between the expected 
value of the response variable(s) and the independent variables are described via a link function as: 

g (µ) = $o + E $i xi (1) 

where g(.) is link function, µ is the expected value of the response variable, βo & β i are regression 
coefficients, and xi ’s are the independent variables. In simple regression, the link function represents the 
mean of the response variable as: 

g (µ) = µ = $o + E $i xi (2)

The above model represents the simplest relationship between the response and independent variables 
in a linear manner.  The above relationship also implies that the dependent variable is continuous and 
random. 

When the relationships between the mean response and the independent variables are not linear, a 
different link function can be used to describe the relationships. The loglinear model, for example, can be 
used where the link function is defined as: 

log (µ) = $o + E $i xi (3) 
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µ / ( 
When the binary response variable (present/absence) is plotted against the independent variable (Figure 
1), the data are on the one and zero lines. Whether the UTM-N variable (i.e., latitude) enhances or 
suppresses the presence of amphibians, a relationship cannot be assessed by examining Figure 1 as 
normally done with the continuous response variables in linear regression analysis.  Therefore, the linear 
model (Equation 2) is not valid for count and dichotomous response variables.  Instead, the response 
variable is related nonlinearly to the independent variable(s) via a link, such as “logit” (Equation 3; solid 
line in Figure 1). The latter is usually chosen as the link function in which logistic regression can be an 
increasing or decreasing function, the link function is differentiable, and it relates the linear predictor to 
the expected value of the response. The logit transformation in Equation 3 should map the binary values 
(0,1) to a range of (-∞ ∞ ) over the domain x (-∞ ,∞ 

where the log( ) = log( µ 1− µ )) is the “logit” link, which is the logit transformation of the probability. 

,	 ). 

Figure 1.	 Presence (=1), absence (=0), and (–) prediction of amphibians as related with 
variable for latitude (UTM-N see Table 1 for variable description). 

Table 1. Description for Metrics Used in Analyses 

Variable Type/Name P > P2 Description 

Patch Size Metrics 

Water 
LogWPArea (A) NS Surface water area (log10 [m2 + 10]) 
SiteSurf (B) NS Surface water linear extent (percent) 

Continued..... 
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Table 1. Continued 

Variable Type/Name P > P2 Description 

Patch Size Metrics, Continued 

Vegetation 
LogRiparea (C) 0.0085 Riparian zone area (log10 [m2 + 10]).  Zone boundaries delineated by indicator 

taxa defined for SITEEMER, SITENATI, and SITERIPA 
SITEEMER (D) NS Emergent-type vegetation linear extent (percent).  Indicator taxa: Typha, 

Eleocharis, Scirpus, Mimulus, Anemopsis; Juncus & Carex if in stream channel 
SITENATI (E) NS Native riparian trees linear extent (percent).  Indicator taxa: Salix, Populus, 

Fraxinus 
SiteRipa (F) 0.0859 Riparian shrubs/herbs linear extent (percent).  Indicator taxa: Baccharis, 

Pluchea, Vitis, Allenrolfea, Equisetum; Juncus or Carex if outside stream 
channel 

SiteMesq (G) NS Phreatophytes linear extent (percent).  Indicator taxa: Prosopis, Chilopsis 

Patch Quality Variables 

Site Scale 
SiteOver (H) NS Linear extent of channel entirely overgrown (< 1 m height) with vegetation 

(percent) 
Per_Rock (I) 0.0704 Bedrock substrate cover (percent) 
AveGrain (J) NS Predominate substrate grain size (median of 5 categories: < 0.1, 0.1-0.5, 0.5-8, 

8-30, > 30 cm) 

Plot Scale 
PlotFlsu (K) 0.0142 Submerged or floating vegetation cover, including filamentous algae, mean 

(percent) 
P_Avedep (L) NS Water depth, mean (cm) 
P_Wetper (M) NS Wetted perimeter width, mean (m) 
Plotsubm (N) 0.0251 Plot substrate size, for granular substrate, mean (log10 of cm) 
PlotCanp (O) 0.0037 Vegetation cover over water, mean (percent) 
PlotEmer (P) NS Emergent vegetation within 15 cm of point, mean (percent) 
P_Cany (Q) 0.0006 Vegetation cover (< 1 m high) over adjacent land, mean (percent) 
PLT_Rock (R) 0.0391 Bedrock substrate cover, mean (percent) 

Water 

LogEC (S) NS Electrical conductivity (log10 of :S/cm) 
PH (T) 0.0802 pH 

Geographic Metrics 

Elevation (U) 0.0038 Elevation (m) 
UTM-E (V) 0.0031 UTM-East coordinate (km), centered on mean (UTM - 659); approximately 

corresponds to longitude 
UTM-N (W) 0.0006 UTM-N coordinate (km), centered on mean (UTM - 3989); approximately 

corresponds to latitude 

Exotic Vegetation 

SiteTama (X) 0.0249 Tamarix spp. (exotic plant) linear extent (percent) in 400-m area 
SiteTamu (Y) 0.0341 Tamarix spp. (exotic plant) linear extent (percent), in 40-m segments 

P value represents univariate logistic regression analyses of the presence/absence of the toad with each 
environmental variable. NS indicates P > 0.10.  Letter inside parentheses corresponds to the variable used in the 
SAS program for simplicity. 
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To relax the distributional assumption in GLM of a strictly linear relationship between response and 
independent variables, the general additive model (GAM) was introduced as an extension.  It uses 
prediction via a nonparametric method.  Fitting a model that accounts for local behavior may describe the 
behavior of the data more accurately than that described by a linear relationship.  GAM uses different 
methods of smoothing to describe the data with little interference from the user. As described earlier, the 
link function in the GLM is in a linear form, whereas in GAM it is in an additive form.  One of the 
common links in GAM is canonical and that describes the relationships between the transformed mean 
response and an independent variable using a nonparametric function as: 

g (E (Y)) = g (u) = Co + E f i (Xi) (4) 

where g(.) is the link transform function, E (Y) is the expected response, co is a constant (intercept), and ƒi 
is a nonparametric function.  The most commonly used link function is the canonical link (Agresti, 1996). 
The main difference between the GLM and GAM for binary data is that GLM-logistic regression assumes 
that the log odds are linearly related to the independent variables, whereas GAM assumes that the log 
odds are related to the sum of smooth functions of the independent variables. 

A parametric method that is comparable to logistic regression analysis, but is used mainly to classify 
the observations into groups of populations, is known as discriminant analysis.  For this data set, where 
the response variable is binary, discriminant analyses combine the independent variables linearly 
separating the data into two groups. This method requires that variance-covariance in each group is 
homogeneous, i.e., multivariate normal (Press and Wilson, 1978).  Both discriminant and logistic 
regression analyses produce solutions in terms of  probability of presence/absence (0-1 response as in the 
binary case).  But the logistic model is preferable if multivariate normality is at all suspect.  The logistic 
model requires more computational effort, but that is not of great concern.  If multivariate normality 
holds, the coefficients of the discriminant model may have a smaller variance. In logistic regression, a 
maximum likelihood method for estimation is used, which does not require that independent variables be 
multivariate normal (see Maximum Likelihood Estimator (MLE) below). 

MARS and Classification and Regression Tree (CART) are two common examples of GAM that have 
been used in many studies (Walker, 1990; Efron and Tibshirani, 1991; Moore et al., 1991; White and 
Sifneos, 1997). Both models can be used for regression modeling of binary response, but CART is more 
useful for classification than regression. Similar to the simple logistic regression, MARS has the 
backward, forward, and stepwise selections that help to choose the most related independent variables to 
the response. The stepwise selection is often preferred because a removed variable may have a chance to 
be included again. 

In any GAM model, the final model is a summation of a group of functions that fit the data locally. 
The final model is data driven and represents closely the behavior of the data. The process of fitting and 
validating a model requires a large number of observations, especially when there are many independent 
variables relative to the number of observations (see text for MARS).  For CART, for example, one needs 
more than 128 observations in a data set (Miller, 1994).  We used MARS as a nonparametric method for 
logistic regression analysis, with the “stepwise” option for selecting the most significant variable, making 
it similar to programs for parametric logistic regression analysis. 

Regression analysis and parametric generalizations make specific assumptions about the functional 
form of the relationship of the response to the predictions (e.g., linear); nonparametric regression, on the 
other hand, places minimal assumptions about the form of the relationship (e.g., Y is a smooth or additive 
function of the X’s).  Thus, extensive computation and a decrease in theoretical framework are exchanged 
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for relaxation of assumptions.  To decide which of the two methods to use (parametric versus 
nonparametric) depends on the user and the size of the data set.  If the interest is for estimation and 
inference about the independent variables, then GLM is the preferred method.  If the interest is to reveal 
structural behavior of the response with the independent variable, then GAM is the method of choice, 
especially when little is known about the nature of the relationship.  Some studies have yielded similar 
results for parametric and nonparametric methods when applied to the same data sets (Bradford et al., 
1998; Sheskin, 2000). 

Below, we describe procedures for a general linear model with logistic regression analysis using SAS 
(SAS Institute, Cary, NC, version 8) and a general additive model (MARS) using a computer program 
also called MARS (Salford Systems, 1999, User Guide), which herein will be noted in italics to 
distinguish it from the statistical method of the same name.  The MARS program can be easily used for 
continuous and binary dependent variables, handle missing values using surrogate variables, include all 
possible interactions, account for collinearity between independent variables, and prevent overfitting for 
the final model.  This program has the algorithm to search for the basis function and knots and define the 
final optimal model with its statistics.  This software offers the use of the Graphic User Interface (GUI), 
commands at the command prompt, and produces a classic output for the analyses. 

1.1 Example Data Set Used 

The main objective of conducting the regression analyses described above is to predict the 
presence/absence of the red-spotted toad (Bufo punctatus) in the northeastern Mojave Desert, USA, as a 
function of the surrounding environment (Bradford et al., submitted).  There were 25 environmental 
variables that were used in this report (Table 1).  These variables represent topography, patch size 
metrics, patch quality, exotic vegetation, and spatial direction.  Although the total number of sites was 
128, only 122 sites were used in the regression analysis because of missing values for some of the 
independent variables. Also, the data herein differed slightly from the data set and model used for 
biological interpretation (Bradford et al., submitted). 

1.2 Logistic Regression 

The response variable is dichotomous or binary (i.e., the presence or absence of toads).  Our interest 
is in estimating the probability of the presence of toads as a function of many independent variables (see 
Table 1 for variable descriptions). The 25 independent variables were grouped based on habitat, scale, 
directional, and environmental characteristics.  For simplicity hereafter, we will use alphabetic letters for 
the independent variables and will refer the reader to Table 1 for variable descriptions. 

Equation (1) is a multiple logistic regression model that relates the proportion of presence (p(x)) as a 
function of independent variables (xi’s). 

g (µ) = Logit (p(x)) = Log { p (x) / (1 - p (x))} = $o + G $i (xi) (5) 

The coefficients $o & $i’s in Equation 5 are estimated using maximum likelihood and are used to 
predict the probability of toad presence as a function of xi’s (Equation 6). 

p = exp($o + E $i (xi)) / (1 + exp($o + E $i (xi)) (6) 

Detailed mathematical descriptions of the logistic regression analysis are given in Hosmer and 
Lemeshow (1989), Christensen (1997), and many others. 
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1.2.1 Maximum Likelihood Estimator 

The Maximum Likelihood Estimator (MLE) is a method used with logistic regression analysis to 
estimate coefficients for the fitted model.  The likelihood function for the logit model is as follows: 

LogL = E $xiyi – E Log(1 + e $xi) (7) 

The coefficients $’s are not linear in Equation 7. The likelihood function (Equation 7) is maximized 
by choosing a value of “$” in an iterative method, such as the Newton-Raphson method and the Fisher-
scoring algorithm in SAS.  The Fisher-scoring algorithm is the default method and Newton-Raphson is 
the alternative method in SAS.  The former and latter methods use the observed and expected information 
matrix, respectively.  However, when the data are binary, results are the same. Newton-Raphson is widely 
used by many in statistics and mathematics, and, therefore, both are explained below for the user.  In the 
Newton-Raphson method, the first (U($)) and second (I($)) derivative of Equation 7 with respect to $ is 
obtained and used in Equation 8 for estimation. The vector of the first derivative is called gradients or 
score, and the second derivative is called Hessian. The value of $ will be estimated by the Newton-
Raphson algorithm as: 

β j+1 =β j −I − β j U β j 
1( ) ( )  (8) 

To solve for $ from Equation 8, an initial value of zero for the coefficient ($) is used to produce the 
first iteration estimate.  This value is substituted back in the right-hand matrix (Equation 8) for the second 
iteration. Iterations continue until the difference between two consecutive iterations is less than or equal 
to a very small value, e.g., 0.001.  More on maximum likelihood is given in Allison (1999, p. 36) and 
Hastie and Tibsherani (1990). 

The Fisher-scoring algorithm is also known as the iteratively reweighted least squares algorithm.  As 
mentioned earlier, the parameter estimate is the same using Newton-Raphson or Fisher-scoring, except 
that the covariance for the parameter estimates may not be the same.  To start the estimation, a value of 
zero for the slopes ($) is used, and a value of logits of the observed cumulative proportions of the 
dependent variables is used for the intercept to produce the first iteration estimates.  These values are 
substituted back for the second iteration. Iterations continue until the differences between two 
consecutive iterations are less than a very small value. 

1.2.2 Assumptions 

When standard regression analysis is fit to a set of data, there are basic assumptions on the errors 
(differences of the observed and the predicted values) that are considered normal, such as an expected 
mean value of zero, constant variance (homoscedasticity), no serial correlation, and no error in 
measurements.  For multiple standard regression analysis, it is important to evaluate the collinearity 
between the independent variables (xi’s). There should not be “perfect collinearity” between the 
independent variables (Berry and Felman, 1985).  A detailed discussion on multicollinearity is given 
below. 

Logistic regression analyses are different from linear regression analyses because of the nature of the 
error. The assumption that differentiates it from linear regression is that the dependent variable is binary 
and has a binomial distribution with a single trial and parameter p(x) (e.g., probability of presence 
given x). 
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Logistic regression also requires that no correlation exists between observations (Hosmer and 
Lemeshow, 1989).  If a number of observations are located close to each other and form a cluster, these 
observations may be dependent, and it is necessary to account for that in the model.  Dependency will 
affect the standard error of the coefficient and make the estimate unstable.  Luckily, there is a Generalized 
Estimation Equation (GEE) option in PROC GENMOD, SAS (Diggle et al., 1994) that accounts for the 
dependence between observations. The dependence between observations is run after finalizing the 
model and is described below. 

Normality of the data is an issue of concern for many researchers.  The assumption of the central limit 
theorem can be used when the sample size is large (> 30) and the distribution of a variable will 
approximate normality (Madansky, 1988).  In standard linear regression analysis, however, basic 
assumptions need to undergo diagnostic checking on the residuals for normality or independence, for 
example.  The link function in logistic regression allows the random component (response variable) to 
have a distribution other than normal.  The prediction in logistic regression is done through the link 
function that models the mean response; the prediction is not obtained directly from the mean response as 
in standard linear regression. Logistic regression analysis uses the maximum likelihood estimators, which 
are approximately normal.  Therefore, coefficients’ p-values and confidence intervals can be estimated 
using the normal and chi-square distributions.  Logistic regression does not require multivariate normality 
of the independent variables. 

Linear relationships between dependent and independent variables were used in Equation 5.  To 
linearize relationships between dependent and independent variables, log transformation of surface water 
area variable (A) was done as an example.  Sheskin (2000) described many methods of data 
transformation.  When nonlinear relationships exist and transformation does not linearize it, then 
nonparametric is the method to use, provided that the sample is large (Efron and Tibshirani, 1991). 

1.2.3 Steps to Follow 

Prior to running the logistic regression analysis, a few analyses are needed to understand the data 
better. Univariate logistic regression analysis is important to examine the strength of the relationships 
between the independent variables and the dependent variables. Collinearity is critical in regression 
analysis and needs to be studied first to exclude any collinear independent variables.  Variable selection, 
goodness of fit, prediction of the model, and diagnostic check of the fitted model are explained in detail 
below. 

a) Univariate Logistic Regression Analysis:  Each of the variables in Table 1 was regressed with 
the presence/absence of toads. Univariate regression analysis reveals the strength of relationship 
and association of each independent variable with toad presence/absence.  Table 1 gives the 
significance level for the slope coefficient for each of the independent variables.  Eighteen of the 
25 variables showed a significant relationship (p# 0.05) with the presence and absence of toads. 

b) Collinearity:  It is necessary to determine the magnitude of the collinearity of the independent 
variables. Collinearity can make the model coefficient unstable (Allison, 1999) and adversely 
affect the coefficient interpretation (Christensen, 1997), but it has no effect on the model 
prediction. A higher value of collinearity elevates the standard error of the estimated coefficient, 
which decreases the coefficient level of significance.  In other words, a coefficient may be 
significant, but because of the presence of other correlated variables its significance may be 
diminished.  Alternatively, a coefficient may be artificially significant and become insignificant 
when correlated variables are removed.  Therefore, caution must be taken when explaining 
coefficients when a high degree of collinearity is present. 

7 



We examined collinearity in four ways: 

1.	 First, we examined the simple pairwise (Pearson) correlation between the independent 
variables. Different cutoff values for r have been recommended as an indication of serious 
collinearity (e.g., *r* = 0.8, Berry and Felman, 1985; *r* = 0.9, Griffith and Amerhein, 1997). 
Belsley et al. (1980, p. 96) reported that *r* values < 0.7 should be considered with no fear of 
serious collinearity.  However, Berry and Felman (1985) indicated that the cutoff value of r 
depends on the number of observations. When the number of observations is small (e.g., 
n < 30), then the recommended cutoff value of *r* is $ 0.70 and when the number of 
observations is > 30 then the cutoff of *r* value is $ 0.85. We used *r* $ 0.85 as the cutoff 
value for collinearity.  If an independent variable is highly correlated with other independent 
variables (*r* $ 0.85), and is not highly associated with the dependent variable (presence of 
toads), that variable was not included in the logistic multiple regression analysis.  Pairwise 
correlation values ranged from -0.77 to 0.77 for the independent variables that entered the 
final regression analysis model. 

2. 	 The second test for collinearity was using the Variance Inflation Factor (VIF) and Tolerance 
(VIF is the inverse of the tolerance (=1-R2), Griffith and Amerhein, 1997) as an indication of 
the degree of collinearity between the independent variables.  VIF represents the amount of 
inflation in the variance when the collinearity of a variable with others exists.  A preliminary 
multiple regression analysis that includes all the independent variables can be used to 
examine VIF.  A VIF value of one indicates that there is no linear relation (R2 = zero) 
between the independent variables. A VIF of more than one means that R2 is more than zero, 
which indicates some linear relation between the independent variables.  VIF may increase to 
some value that makes the model unstable (i.e., “imprecise” in its prediction).  A question 
may be asked:  What is the cutoff value for VIF?  Different values are given in the literature. 
Neter et al. (1996) and Griffith and Amerhein (1997, p. 99) indicated that a value of VIF that 
exceeds 10 can lead to a serious collinearity.  For our analyses, we used VIF values of 10 as a 
cutoff for collinearity. 

Note: VIF is used later (page 13) for the diagnostic checking of the final logistic model. 

3. 	 The third test was to examine the absolute correlation between the coefficient estimates.  A 
pairwise correlation r > 0.9 indicates that one variable has to be excluded from the regression 
analysis (Griffith and Amerhein, 1997).  Griffith and Amerhein (1997) suggested that this test 
reveals a better indication of the linearity between a single variable and the linear 
combinations of others.  The correlation between coefficient estimates can be outputted by 
adding an option CORRB to the Proc Logistic SAS statement.  The highest r value (= 0.887) 
in our case was between salinity (S) and elevation (U) coefficients, and the lowest (= -0.72) 
was between latitude (W) and surface water area (A). 

4. 	 The fourth test was very simple and is used frequently by many researchers. It is performed 
by observing changes in the value and sign of a coefficient that is already in the model upon 
the addition of other independent variables. If a big change occurs in coefficient value or the 
sign is reversed, then this is an indication of collinearity.  This method may be the best, 
though somewhat inefficient, since it is really model instability that is of concern. 

Scientific knowledge is often useful in avoiding problems with collinearity.  Although 
multicollinearity can occur with three or more variables, such that it masks its presence in any 
subset of two of these variables, it is most often seen with two.  Hence, the first test (though 
without stringent cutoff values) is quite useful and simple. 
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c)	 Variable Selection:  Stepwise selection (SAS) was used in selecting variables for the logistic 
multiple regression analysis.  In this selection method, there are two probability values that 
control the variable to be entered (SLENTRY) or removed (SLSTAY) from the model.  There 
were two important recommendations stating that the probability values for variable entry should 
be: 

1.	 Higher than 0.05, giving an opportunity for an important biological variable to enter the 
model, and 

2.	 Higher than that of removing the variable (Efroymson, 1960; Bendel and Afifi, 1977; Mickey 
and Greenland, 1989). A significance level of entry $ 0.25 has been recommended for 
stepwise regression analysis (Mickey and Greenland, 1989; Hosmer and Lemeshow, 1989). 
We used a value of 0.3 and 0.1 for SLENTRY and SLSTAY, respectively.  We felt the 
significance level of # 0.1 was appropriate for identifying independent variables influencing 
the presence/absence of toads in the final model. 

One key point to make is that some biological variables are important in explaining or predicting 
a biological phenomenon, yet their significance level may be more than 0.05 in the final model. 
A decision has to be made between a sound biological (or physical) model and a statistical model; 
therefore, it may necessitate increasing the significance level to more than 0.05. 

Before finalizing the fitted modes, variables that are in the model have to be checked for VIF.  A 
variable with high VIF should not be left in the model.  A variable with high VIF would cause an 
unstable model, and, when deleted, would cause a major change in the coefficient estimates. 

d) Assessing Model Fit:  Proc Logistic (SAS) produces many statistics to test for predictiveness 
and effectiveness of the fitted model.  Statistics such as Akaike Information Criterion (AIC), 
Shwarz Criterion (SC), and negative twice the log likelihood (-2 Log L) are given for the model 
with and without the independent variables (intercept only).  Substantial reduction of these 
statistics, upon including independent variables, indicate a good predictive model.  For example, 
the values of -2 Log L before and after including the independent variables were 144.38 and 
55.58, respectively (Table 2).  The difference in these two values is the maximum likelihood ratio 
P2 value (= 88.80) which was significant (p < 0.0001; Table 2). Analogous to a standard 
regression analysis, where the model F value is used to test the null hypothesis (Ho: all 
coefficients are equal to zero), we used Wald P2 in logistic regression analysis.  Wald P2 is 21.81 
(p = 0.0027; Table 2), rejecting the null hypothesis that states all coefficients are zero. 
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Table 2. SAS Output for Model Fit, Testing Global Null Hypothesis, and Association 
of Predicted Probability and Observed Toad Presence 

Model Fit Statistics 

Criterion Intercept only Intercept and Covariance 

AICa 146.377 (=144.377 + 2*1) 71.583 (=55.583 + 2*8) 
SCb 149.181 (=144.37 +1*Ln(122)) 94.015 (=55.583 + 8*Ln(122)) 
-2 Log L 144.377 55.583 

R-Square 0.5170 Max-rescaled R-Square 0.7453 

Testing Global Null Hypothesis:  Beta = 0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 88.7946 (=144.377 - 55.583) 7 < 0.0001 
Score 55.5509 7 < 0.0001 
Wald 21.8141 7 0.0027 

Association of Predicted Probabilities and Observed Responses 

Percent Concordance 95.4 Somers’ D 0.909 
Percent Discordant 4.5 Gamma 0.909 
Percent Tied 0.0 Tau-a 0.368 
Pairs 2992 c 0.954 

a 
AIC = -2LogL + 2*k, where k is the number of coefficients in the model. 

b 
SC = -2LogL + k*ln(n), where n is the total number of observations (SC is also known as 
Baysian Information Criteria). 

The Wald chi-square statistic appears in logistic SAS output twice, once to test for the hypothesis 
that all coefficients are zero and again to test the significant level of each coefficient.  A Wald 
statistic for the models is given in “Testing Global Null Hypothesis,” and for each coefficient is 
given in “Analysis of Maximum Likelihood Estimates.” For the calculations of the overall model 
Wald statistic, refer to Long (1997) and Rao (1973).  For each coefficient, a Wald statistic is 
easily calculated as the squared ratio of the value of a coefficient and its standard error (Table 3). 

It is important to note that when testing the best fitted model, it is safer to use a log likelihood 
ratio than the Wald test. When the coefficient is large, a Wald test can lead to Type II error.  In 
general, the two statistics should not disagree substantially, and if they do, it may indicate that an 
asymptotic test is not appropriate.  Pearson’s chi-square is generally the best test of the overall 
model, but all fail for binary data.  For nested models, the log likelihood ratio is generally 
preferred. 
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Table 3. Final Stepwise Logistic Regression Analysis Model (n = 122 sites) 

Variable Estimate ($) 
Standard 

Error P 
Standardized 

Estimate 
Odds 
Ratio Variable Description 

Intercept 10.9961 2.9378 0.0002 

U -0.00858 0.00211 < 0.0001 -2.1904 0.991 Elevation 

W -0.0868 0.0211 < 0.0001 -1.7455 0.917 Latitude 

S -6.4869 1.8971 0.0006 -1.3683 0.002 Water salinity 

I 0.1865 0.0635 0.0033 1.3399 1.205 Bedrock substrate cover 

O -0.0601 0.0170 0.0004 -1.0299 0.942 Vegetation over water 

A 1.8175 0.7135 0.0109 0.7666 6.157 Surface water area 

Q -0.0383 0.0153 0.0125 -0.5487 0.962 Vegetation over adjacent land 

Dependent variable is patch occupancy by red-spotted toad (B. punctatus). Variables are arranged in order of 
importance in influencing patch occupancy (i.e., by absolute value of a standardized estimate).  $ is a parameter 
estimate, and Odds Ratio is exp($). P value for Wald statistic. 

β ∗ std xstandardized estimate = 
std y 

Where $ is the coefficient estimate in Table 3 (e.g., U = -0.00858),

stdx is the standard deviation of the independent variable (e.g., std for U = 463.159),

stdy is the standard deviation of the dependent variable (1.8138, see Allison, 1999),


−  0.00858 * 463.159 
therefore the standardized estimate for U =  =  -2.1904 

1.8138 

The Wald test for overall model significance, P2 = 21.8, df = 7, 114, P = 0.0027.  Hosmer-Lemeshow goodness of 
fit test, P2 = 3.91, df = 8, P = 0.87.  Percent of sites correctly classified as having present or absent populations is 
95.4 percent. 

R2 is known in standard regression analysis as the coefficient of determination.  In logistic 
regression analysis, it is known as the generalized R2 and can be used to determine the predictive 
ability of the fitted model.  To decide between models, choose the model with the highest R2 

value indicating a better predictive model.  Allison (1999) used R2 to identify the power of 
prediction of the fitted model.  Logistic regression analysis R2, known as the generalized R2, is 
calculated differently than that of the standard regression analysis and should not be used to 
describe the percent of explained variability as in standard regression analysis. 

R2	 = 1- exp(- Likelihood ratio P2 / n)

= 1- exp(- 88.80 /122) = 0.5170 or 52 percent (Table 2)


The generalized R2 has an upper value which is not equal to one, as in the standard regression 
analysis.  The logistic upper R2 value is called “Max rescaled R2 ” value and is determined by 
dividing the generalized R2 by the upper R2 value (see calculation below): 

Upper R2	 = 1-exp(- Intercept only (-2 Log L) / n) =

= 1-exp(-144.377/122) = 0.6938 or 69 percent
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Max-rescaled R2 = 0.5170/ 0.6938 = 0.7453 or 75 percent (Table 2, Allison, 1999) 

Measures of associations between observed and predicted values, also known as ordinal measures 
of associations, are given by SAS (Table 2).  In explaining concordance, there are 7,381 pairs 
(122*121/2) of all possible combinations (presence/presence, absence/absence, and 
presence/absence). For concordance/discordance calculations, presence/absence pairs are 
considered (2,992 pairs). The model predicts the probability of presence, so if the probability of 
predicting presence is higher than that of absence in a pair, it is concordant.  Otherwise, it is 
discordant. Our fitted model has a strong prediction for toad presence measured by a 
concordance of 95.4 percent. 

There are many measures for the prediction ability of the fitted model to predict the presence of 
toads. These are measures of association and they are all high in values except for Tau-a (0.37; 
Table 2). Comparing Somers’ D (0.91 percent) and R2 (0.52 percent) values, there is a large 
difference between the two values, and the R2 value is not very high.  With a well-fit model in 
standard regression analysis,  R2 is expected to be high (e.g., > 90). Contrary to standard 
regression analysis, a low value of R2 is expected in logistic regression analysis, even when 
applying a well-fit model to the data.  Christiansen (1997, p. 128) suggested using R2 as a relative 
measure of goodness of fit but not as a measure of the absolute goodness of fit.  The value of 
logistic regression analysis R2 becomes high only when the predicted probability approaches zero 
or one. Therefore, the value of R2 can be used to compare two models and then to choose the one 
with higher value. The ability of the model to predict presence/absence can be assessed by the 
concordance. 

The goodness of fit statistics is 3.905 with p = 0.8656, indicating a good fit (a Hosmer and 
Lemeshow goodness of fit test).  When the probability is not significant (p > 0.05), a good fit is 
indicated. Thus, the logistic fitted model appeared to be “the right” model for presence/absence of 
toads. 

e)	 Coefficient Estimates:  Overall model P2 indicated that at least one coefficient is not zero. To 
test whether an independent variable in the model is significant, the Wald statistic was used 
(Table 3). All coefficients are significantly different from zero (p < 0.013; Table 3).  An increase 
in surface water area and extent of bedrock substrate resulted in a higher probability for the 
presence of toads in the study area. Inversely, higher elevation, latitude, mean of percent 
vegetation cover over water, mean percent vegetation cover on the adjacent land, and electrical 
conductivity resulted in a lower probability of toads being present.  Further interpretation of the 
physical relationships of these variables to the presence of toads is given in Bradford et al. 
(submitted). 

Another statistic is the relative importance of the independent variables in the model, which is 
measured by the standardized estimate (Table 3).  This statistic makes comparison possible across 
variables with different measurement units.  Elevation is the most important environmental 
variable affecting the presence of toads, followed in importance by latitude (W), salinity (S), and 
percent bedrock substrate (I). A simple figure such as a box-plot can show the relationships 
between presence and absence for each of the independent variables (Figure 2).  Values at 
quartiles 1, 2, and 3 for elevation, latitude, and vegetation cover over water over adjacent land are 
higher for sites where species is absent. Odds ratio can be defined as the ratio of odds for 
presence to the odds for absence. The predicted odds of toad presence for elevation are 0.991 
times the odds of absence of toads.  The independent variable in this study is a continuous 
variable, therefore, the odds ratio presents changes in toad present per one unit increase in the 
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independent variable. An increase of one unit (meter) in elevation decreases the predicted odds 
of presence of toads by 0.9 percent (1-0.991; Table 3).  An increase of 100 units in elevation will 
change the predicted odds from 0.991 to 0.424 (exp(100*-0.00858 = 0.424).  That is, with 100 
more units in elevation, the predicted odds of presence are 0.424 times the odds of absence which 
is a decrease of 58 percent (1-0.424) in predicted odds of presence (see Hosmer and Lemeshow, 
1989, pg. 63). In another example, the predicted odds of presence for bedrock substrate cover is 
1.21 times the odds of absence.  An increase of one unit (1 percent) in bedrock substrate cover 
increases the predicted odds of presence of toads by 21 percent. 

Figure 2.	 Box-plots show the presence (1) and absence (0) of toads as related to the independent 
variables. Independent variables are: Elevation (U), UTM-N (W; latitude), and vegetation 
cover (< 1 m high) over adjacent land, mean % (Q). “+” is the mean value; lines for box from 
top as: Maximum, Quartile 3, Quartile 2, Quartile 1 and minimum values. 

f)	 Diagnostic Checking 

1.	 VIF. Before analyzing the Logistic Regression analysis output, VIF for each of the 
independent variables in the final model was examined by incorporating a weighted value 
(variance of the binomial) into the VIF calculation to account for collinearity (Allison, 1999, 
p. 50). The steps below are suggested to first output the residuals into file ‘O1’ from the 
logistic regression analysis in SAS and run weighted linear regression analysis as: 

Data O2; 
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Set O1;/*O1 is the residual from the regression equation */ 
W 	= Pred*(1-Pred); 

run; 
Options ps = 255 ls = 100; 
Proc Reg data = O2; 

Weight W;

Model Toad = U W S I O A Q / TOL VIF;


run; 

VIF values for the independent variables in our case ranged from 1.3 to 8.0.  These values are 
< 10, indicating no serious collinearity (Allison, 1999). 

2.	 Deviance:  A low value of the residual in linear regression analysis indicates that an 
observation is close to its predicted value. This is not the case in logistic regression analysis, 
and we may find a high residual value for normally distributed observations (Christensen, 
1997). Using residuals to check for the fitted model as described in linear regression analysis 
is not appropriate for logistic regression analysis.  SAS outputs many statistics to describe the 
influence of each observation on the fitted model and outliers.  DFBETAS can detect an 
observation that causes instability for the model coefficient.  DIFDEV and DIFCHISQ detect 
change in deviation and Pearson chi-square when an observation is deleted from the model. 
C and CBAR statistics are similar to that of Cook’s D distance in the standard regression 
analysis, where a confidence interval is used to detect outliers. 

The Hat matrix diagonal is also known as leverage and is used to indicate how extreme the 
observation is as related to independent variables.  High and low leverage are indications of a 
poor fit for these identified observations. A change in deviance and Pearson P2 with a value 
of more than 4 (value of 4 as the upper 95th percentile of the ªP2 distribution with one degree 
of freedom; P2 

0.95 = 3.84) needs to be considered and explained on the basis of the knowledge 
of these observations to make sense of the behavior.  Sometimes, data like this may be 
deleted, but this behavior of the data should be investigated further: perhaps more data are 
needed. More data may result in a lower value (i.e., less than a value of 4).  Plotting 
differences in Deviance and Pearson P2 are recommended to visualize the overall fitting of a 
covariate pattern and to look for clusters or points that are isolated from the overall pattern 
(Figures 3 and 4). In each figure there are two curved lines; the curve (left) that decreases 
with predicted probability describes the behavior of the covariates when toads are present, 
and the other (right) describes the pattern when they are absent.  Figures 3 and 4 show that 
one value is more than 10 and 3 others are more than 4.  These values were not removed from 
the data because of their physical importance to presence and absence of the toad.  Hat matrix 
and DFBETAS are also output by SAS to show high magnitude values when an observation 
is deleted. More detail about this is given by Lemeshow and Hosmer (1989). 

One additional diagnostic check to make is on the variance homogeneity.  This can be done 
by plotting the square root of the residual deviance vs. the predictor and examining the 
behavior of points (Figure 5). The points are scattered randomly over the domain with no 
clusters, indicating no heterogeneity in variance. 
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Figure 3. Deviance (DIFDEV) values for the predicted probability of the 
presence and absence of toads. 

Figure 4. Chi-square (DIFCHISQ) values for the predicted probability of the 
presence and absence of toads. 
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Figure 5. Square root of the absolute value of the deviance residual for each independent variable (xi’s) 
that was significant in the final model. 
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1.2.4	 Model Selection 

One may have many models in hand and would like to choose only one of them.  A comparison has 
to be made between the saturated model (all independent variables are included in the model) and reduced 
models (model with a specific number of independent variables).  Many statistics can be used in model 
selection such as R2 and Wald statistics as mentioned earlier.  An analog of Mallows Cp1 that is used in 
standard linear regression (see footnote), Cp can be used in logistic regression to select a model.  The Cp 
statistic in logistic regression is related to Akaike’s criteria information (AIC).  A model with the lowest 
Cp can be chosen as the best fitted model.  Hosmer and Lemeshow (1989, p. 134) describe in detail the 
use of a modified Cp denoted as Cq. Lower Cq values indicate a better model to choose. 

1.2.5	 Dependence Between Observations 

In logistic regression, it is important that observations are independent.  If the dependence between 
observations in a group is of concern, then data may be grouped in a logical way (in our case watershed 
and mountain range) to examine whether sites/observations that are located near each other are 
dependent. The final model was run again using Proc GENMOD with the two groups/clusters 
(Appendix 1). Estimates of values and their probabilities were compared with that of Proc Logistic to 
note any change in coefficient values and their level of significance (p > P2). If the estimate’s significant 
levels change from significant to insignificant or vice versa, then dependence is an issue, and analysis has 
to be done by groups.  Thus, in this situation one global logistic regression analysis would not be valid for 
all the observations. The following are SAS statements that use GEE through the Repeated option. 

Options ps = 255 ls = 100; 
Proc Genmod data  = neweuc;


Class WsGrp; /* by watershed group */

Model Toad = A U W I O Q S / D = B;

Repeated subject = Wsgrp / Type  = exch;


run;

Options ps = 255 ls = 100;

Proc Genmod data  = neweuc;


Class Rangegrp; /* by mountain range group */

Model Toad = A U W I O Q S / D=B;


Repeated subject = Rangegrp / Type  = exch;

run;


1 Mallows Cp is a statistic that was developed by Mallows (1973) as: Cp =
RSS β - (n-2$)

S 2 

Where	 RSS$ is the residual sum of squares from regression analysis model;

S2 is the residual mean square, an unbiased estimate of the error variance (F 2);

$ is the number of coefficients including an intercept; and

n is the number of observations.


Cp can be used to select the best fitted model. For a satisfactory model, Cp and $ should be close in value. Normally, a “1-1” 
plot of Cp (y-axis) vs. $ (number of coefficients; x-axis) is constructed to give an idea of the best fitted model (Draper and 
Smith, 1981, p. 300). If the model Cp value is above the “1-1” line, then it indicates a biased model.  The best fitted models 
have a low Cp that is closer to the number of coefficients. 
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Results in our case indicated that estimates (coefficients) and their significant levels remain largely 
unchanged when either group was considered (Appendix 1).  Therefore, it was concluded that there was 
no dependence between sites. 

SAS statements for running the standard logistic regression analysis are given in Appendix 2. 

1.2.6 Interactions 

Interaction is referred to as the effect of the cross product of two independent variables on the mean 
response. For example, if the probability of presence as a function of latitude is dependent on elevation, 
then an interaction term (= latitude x elevation) must be included.  Interaction between variables, 
therefore, should be considered if researchers deem it necessary to ensure that the final model is sound 
biologically and statistically.  See Bradford et al. (submitted) for inclusion of interaction terms in the 
model. 

Note:	 Researchers may find that there is a need to reduce the number of variables in the model, but this 
should not be done by arbitrary exclusions.  An investigation of the magnitude of each coefficient 
may explain the importance of each variable. A coefficient’s value describes the relation to the 
dependent variable and defines the rate of change of the dependent variable per one unit change in 
the independent variable. When two coefficients that are very close in value have opposite signs, 
the difference between them may be used in the model instead of the individual variables. One 
must define the statistical significance level and physical contribution of the new coefficient to 
decide whether the difference has better representation/contribution to the model.  Then one can 
compare the new model R2  with that of the original. These results may show some interesting 
biological phenomena. 
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Section 2 

MARS 

In the above logistic regression analysis, a linear relationship was assumed between the response 
variable, log(p(x)/1-p(x)), and the independent variables. A researcher may wish to explore if there are 
any nonlinear relationships between the response and the independent variables.  That is, the response 
may have a piecewise behavior over the domain.  In standard regression analysis, prior to fitting the 
model, the researcher has to specify the form of the nonlinear behavior (e.g., square).  Modern 
nonparametric regression analysis can be used to model linear and nonlinear behavior without prior 
specification to the form of data behavior.  To relax the assumption in GLM, the General Additive Model 
(GAM) was introduced. In GAM, the expected response value is a sum of smoothed functions of the 
independent variables. MARS and Classification and Regression Tree (CART) are two of the modern 
nonparametric regression analysis methods that are used in environmental studies (Walker, 1990;  Moore 
et al., 1991; White and Sifneos, 1997; Miller, 1994). Computer algorithms, such as MARS (Salford 
Systems, 1999) and CART (Salford Systems, 1999), were developed to be used for data analysis.  The 
selection option for variables in MARS (Salford Systems, 1999) algorithm and standard logistic regression 
(SAS) makes both methods similar in procedure for comparing results.  We will use MARS in italics to 
differentiate the program from the method. 

MARS, which was developed by Friedman (1991), is “extremely promising as an automatic high 
dimensional smoother” (Hastie and Tibshirani, 1990). It is data-driven more than user-driven, as in the 
case of simple regression analysis.  For each of the variables, an algorithm is employed to determine the 
function of the variable (e.g., linear, cubic, etc.) by using a sequence of local nonparametric regression 
analysis on the data. 

2.1.1 Model Fitting 

In simple regression analysis, regression is done globally and may be sensitive to outliers. MARS, on 
the other hand, reduces the effect of outliers on the final model.  It builds flexible models by fitting 
piecewise linear regression analysis to data to approximate the nonlinear behavior of the independent 
variables. Prior to building the model, we need to define and explain a few steps that need to be 
understood when running MARS. 

1) Knots:  When one regression line does not fit well to all the data, several regression lines (piecewise) 
are used to describe the overall behavior over the entire domain of the independent variable.  The 
value of the independent variable where the slope of a line changes is called a knot. The knot defines 
the end of one domain and beginning of another.  Between two knots, a linear (or cubic) regression 
line is fit to that group of data. When the slope is not changing along the entire domain, then one line 
fits all the data resulting in no knots. 
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2)	 Basis Functions:  Basis functions are a set of functions used to reexpress the relations between 
dependent and independent variables.  For example, basis function (BF1) on the variable elevation is 
defined by MARS as: 

BF1 = max(0, elevation - 219)	 (9) 

Data for elevation variables are grouped into two sets: the first set is assigned 0 for all elevation 
values that are below a threshold (e.g., c = 219 m), and the second set contains the elevation values 
that are more than 219 m. Elevation has no relation to the probability of presence (i.e., slope = 0) for 
values below the threshold of 219 m, but has a negative relationship (slope < 0) above this threshold. 

3) Fitting a Model:  The initial model starts with a constant only (co), then adds a basis function (a 
single or multivariate interaction term) in time to build up a comprehensive model that contains the 
maximum number of basis functions and their interactions, which are specified by the user 
(Equation 10). 

Y = co + ci * BFi + error	 (10) 

where Y is the response variable, co is a constant and ci is a coefficient for the basis function. Not all 
these basis functions contribute significantly to the model. The least contributing one is deleted by the 
stepwise method, and the final model contains the significant functions that contribute to the 
dependent variable. Analogous to CART, the initial model is overfitted, which is then pruned to give 
the optimum model with the lowest mean square error (MSE). 

4) Fitting Logistic Regression:  A modification to Equation 10,  Hastie and Tibshirani (1990) 
introduced the logistic regression analysis using the modern additive logistic as: 

Log[p(x)/(1-p(x))] =  $o + 3 fi(xi)	 (11) 

where $o is a constant, and fi(xi) estimates local smooth functions; as mentioned earlier, this model 
can also contain interactions of order $ 2. Our task is to accurately predict the probability of the 
presence of toads given many independent variables.  The same data (122 observations with 25 
variables) that was used for the normal logistic regression analysis was used again in the MARS 
program. 

5)	 Model Validation:  With large sample sizes, the data are split into training (e.g., 90 percent of the 
data) and test sets (e.g., 10 percent of the data). The training data set is used for building the model, 
and the test data set is used to validate the fitted model.  When the sample is not large, cross 
validation (CV) is the best method to use for validation.  In CV, one observation is left out and 
smoothing is done on n-1 observations.  The CV is the mean sum square of the differences between 
the Yi’s and their predicted values (f -i(xi)) where an observation is excluded: 

CV = 1/n 3 {Yi - f -i (xi)}2	 (12) 

The MARS outputs CV and PSE (PSE = 1/n 3 {Yi - f (xi)}2) can be used to assess the final model. 
PSE is the mean Predictive Squared Error when all observations are included, whereas CV is a measure 
for n-1 observations. When CV and PSE are close in value, a minimum CV is reached and an optimal 
model is produced.  Another measure for the optimal model is the Generalized Cross Validation (GCV) 
as a measure of mean square error.  A model with minimum GCV is to be chosen.  GCV is analogous to 
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Cp in simple regression analysis (see page 17) which is known as “Mallows’ Cp” (see Hastie and 
Tibshirani (1990) for detail description of Cp and GCV). 

2.1.2 Final Model 

The model was run with 121-fold cross validation, 40 minimum numbers of observations between 
knots, and 15 maximum basis functions (these options are in the “Testing” option in GUI).  The degrees 
of freedom is the number of observations between knots to be considered in smoothing and can be 
defined in three different ways (see Testing in MARS user guide GUI; Model-set-up, Model). 

Different models can be applied with different options in GUI, and the model with the lowest PSE 
and GCV is chosen. PSE and GCV are given in MARS output (see Appendix 3 at the end of cross 
validation; (estimated) PSE = 0.124 and GCV = 0.136). Values of GCV and PSE are similar; therefore, 
we can conclude that an optimal model is reached. 

The final model with all the above options yielded: 

P(Y=1 * X) = f(U) + f(W) + f(Q) + f(S) + f(O) + f(C) + f(I). 

The independent variables were similar to those by Proc Logistic (Table 4), except for A (surface 
water area) which was replaced by C (riparian zone area).  Both of these metrics reflect the extent of a 
moist habitat.  Also, the number of variables was similar for both methods.  Input and output of MARS to 
this data set are given in Appendix 3. 

Table 4.  Coefficients and Their Statistics From MARS. Model F = 14.128, p < 0.001, df = 7,114 

Variable Estimates t-ratio P value Variable description 

Intercept 1.690 8.082 0.745E-12 

Basis function 1 (W) -0.005 -5.981 0.261E-07 Latitude 

Basis function 2 (U) -0.405E-03 -4.335 0.316E-04 Elevation 

Basis function 3 (O) -0.003 -2.431 0.017 Vegetation over water 

Basis function 4 (S) -0.302 -2.902 0.004 Water salinity 

Basis function 5 (C) 0.111 2.966 0.004 Riparian zone area 

Basis function 6 (Q) -0.004 -2.850 0.005 Vegetation over adjacent land 

Basis function 7 (I) 0.005 2.237 0.027 Bedrock substrate cover 

All 15 base variables with their contributions by GCV to the preliminary model are given in 
Appendix 3 (“Forward Stepwise Knot Placement”).  GCV gives the amount of degradation in the model 
when a variable is deleted. 

The importance of each variable in the model is another valuable output from MARS, which describes 
the amount of reduction in goodness of fit when any variable is removed.  Latitude and elevation 
variables were the most important variables with 100 percent and 70 percent importance, respectively. 
Extent of riparian zone, salinity, and percent vegetation cover over adjacent land were similar in their 
importance (.37 percent), whereas percent of vegetation cover over water and percent of bedrock 
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substrate were the least important (< 30 percent; see output in Relative Variable Importance section for 
these values, Appendix 3). 

The Basis functions for the final model were: 

Minimum

BF1 = max (0, W - 3927.375) 3927.375

BF2 = max (0, U - 219) 219.0

BF3 = max (0, O - 0.585E-6) 0.0

BF4 = max (0, S + 1.053) 1.053

BF5 = max (0, C - 1.00) 1.00

BF6 = max (0, Q - 0.191E-5) 0.0

BF7 = max (0, I  + 0.192E-6) 0.0


The above basis functions indicate the linear relationships between the dependent and independent 
variables (Figure 6). The basis functions all behaved linearly and started at the minimum values for each 
variable. In other words, there was no piecewise fitting. The final model is: 

Y = 1.69 - 0.005*BF1 - 0.405E-3*BF2 - 0.003*BF3 - 0.302*BF4 + 0.111*BF5 - 0.004*BF6 + 
0.005*BF7. 

One important note to make here is that when different options in model specification in GUI were 
used, the sign for some variables was reversed in the final model.  This is known as the collinearity effect 
between the independent variables. An option called “penalty” (“Option and Limits” Model in GUI) can 
be used when variables are added to reduce the potential of including collinear variables in a model. 

For the final model, the “overall” F value was significant (F = 14.13, P = 0.425E-12, df = 7,114; 
Table 4; Appendix 3). There are three different values of R2 which appear in the GUI and the output 
(Appendix 3) that can be used to describe the degree of association between the basis functions and the 
dependent variable, similar to that in ordinary least square regression.  Therefore, these R2 values are not 
appropriate for assessing the predictive power of the model when the response variable is a binary.  These 
values, however, can be used to compare models.  The description below for each R2 is for clarification. 
In GUI, Naïve R2 (final MARS-Model R2), Naïve-Adjusted R2, and GCV R2 are given. In the output 
(Appendix 3), values of R2, adjusted R2, and the uncentered R2 are given. An explanation of each is given 
below: 

Naïve (GUI) and R-squared (Appendix 3):  The degree of the association between the dependent 
variable and the basis functions. It was calculated in the same way as the R2 for the simple 
ordinary least regression analysis. 

Naïve-Adjusted R2 (GUI) and Adjusted R2 (Appendix 3):  It is the same as the adjusted R2 for the 
simple ordinary least regression analysis, adjusted for the number of basis functions. 

GCV R2: It is adjusted for the effective number of the parameters in the model, and it is always the 
lowest in value of the MARS R2. 

Uncentered R2: It should not be used to test for goodness of fit. It is used in econometric diagnostic 
tests. 

22 



R2 and Adjusted R2 were 0.465 and 0.432, respectively.  The R2 values from MARS and simple 
logistic regression analysis are close to 50 percent. Values for the coefficients, Standard Error, T-Ratio 
and associated P-value are given in Appendix 3. All coefficients were significant (P < 0.03). 
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Figure 6. Regression for the main effect variables in the model using MARS. 



Section 3 

Conclusion 

The goal of this report was to provide a reference manual to assist researchers in making informed use 
of logistic regression using the standard logistic regression and MARS.  The details for analyses of 
relationships between presence/absence of an amphibian and environmental variables were exhibited in a 
manner to be used easily by nonstatistical users. 

As noted, when comparing the standard logistic regression with another parametric method such as 
discriminant analysis, the former does not require multivariate normality, which often makes it more 
applicable to field data. Logistic regression using the nonparametric method, MARS, allows the user to 
fit a group of models to the data that reveal structural behavior of the data with little input from the user. 
Results using the standard regression (GLM) and general additive models (MARS) were similar for our 
example data set. 

Logistic regression analysis was used to predict the probability of toad presence with respect to a 
number of environmental variables.  Variable importance measured by the standardized estimate indicated 
that the geographical metrics (latitude and elevation) were the most important factors influencing toad 
presence, operating in a negative relationship. On the other hand, water salinity and percent bedrock 
substrate had lesser impacts on toad presence, with the former operating in a negative direction and the 
latter operating in a positive direction. 

MARS is a nonparametric logistic regression analysis that is close procedurally to the simple 
parametric logistic regression analysis because of the variable selection through stepwise regression 
analysis.  MARS and simple logistic regression analysis yielded similar models, and both indicated that 
latitude and elevation are the most important variables influencing toad presence.  For this data set, the 
simple logistic regression analysis is the better method to be used because of the low number of 
observations (n = 122). It is recommended that if the degrees of freedom between knots were 10 and 20, 
the number of observations of 1,000 would be needed when using 30 variables (MARS; User guide, p. 
34); that is, for each independent variable, 33 observations are needed.  Although six independent 
variables were significant for both the simple logistic regression analysis and the nonparametric logistic 
regression analysis (MARS), and the R2 values were similar, the application of MARS to this data set is 
still not superior to that of the parametric procedure. 

On a final note, the decision to use simple logistic regression, MARS, or any other nonparametric 
method, has to be made on the basis of the suitability and interpretability of the statistical model to 
describe a phenomenon.  If the interest is to infer the significance and importance of environmental 
variables in the model, then GLM logistic regression is the method to use.  If the interest is to visualize 
and examine the structural relationship between a response and independent variable, especially when 
there is little or no knowledge about the data, then GAM is the method to use.  A combination of the two 
methods may help reveal an important relationship in building the right statistical model. 
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Appendix 1


GENMDOD Output


Dependence Between Observations 
Based on Watershed Group 

8:38 Thursday, April 19, 2001 

The GENMOD Procedure 
Model Information 

Data Set WORK.NEWEUC 
Distribution Binomial 
Link Function Logit 
Dependent Variable Toad 
Observations Used 122 
Probability Modeled Pr (Toad = 1.0000) 
Missing Values 6 

Class Level Information 
Class Levels Values 
WSgrp 11 AMFL AMRI COLD COLO ELDO IVAN LASV MESQ PAHR PAIV VIRG 

Response Profile 
Ordered Level Ordered Value Count 

1 1.0000 88 
2 0.0000 34 

Parameter Information 
Parameter Effect 

Prm1 Intercept 
Prm2 A 
Prm3 U 
Prm4 W 
Prm5 I 
Prm6 O 
Prm7 Q 
Prm8 S 
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Criteria for Assessing Goodness of Fit 
Criterion DF Value Value/DF 
Deviance 114 55.5828 0.4876 
Scaled Deviance 114 55.5828 0.4876 
Pearson Chi-Square 114 74.4921 0.6534 
Scaled Pearson X2 114 74.4921 0.6534 
Log Likelihood -27.7914 

Algorithm Converged 

Analysis of Initial Parameter Estimates 
Standard Wald 95% 

Parameter DF Estimate Error Confidence Limits Chi-Square Pr > ChiSq 
Intercept 1 357.1798 85.5390 189.5266 524.8331 17.44 <.0001 

A 1 1.8175 0.7135 0.4191 3.2158 6.49 0.0109 
U 1 -0.0086 0.0021 -0.0127 -0.0044 16.45 <.0001 
Y 1 -0.0868 0.0211 -0.1281 -0.0455 16.99 <.0001 
I 1 0.1865 0.0635 0.0620 0.3109 8.62 0.0033 
O 1 -0.0601 0.0170 -0.0933 -0.0268 12.54 0.0004 
Q 1 -0.0383 0.0153 -0.0683 -0.0083 6.24 0.0125 
S 1 -6.4872 1.8972 -10.2056 -2.7687 11.69 0.0006 

Scale 0 1.0000 0.0000 1.0000 1.0000 

Note: The scale parameter was held fixed. 

GEE Model Information 
Correlation Structure Exchangeable 
Subject Effect WSgrp (11 levels) 
Number of Clusters 11 
Clusters with Missing Values 5 
Correlation Matrix Dimension 34 
Maximum Cluster Size 33 
Minimum Cluster Size 1 

Algorithm Converged 

Analysis of GEE Parameter Estimates 
Empirical Standard Error Estimates 

Standard 
Parameter Estimate Error 95% Confidence Limits Z Pr > (Z) 
Intercept 354.2233 73.0343 211.0788 497.3679 4.85 <.0001 

A 1.8578 0.4825 0.9122 2.8035 3.85 0.0001 
U -0.0084 0.0012 -0.0107 -0.0061 -7.22 <.0001 
W -0.0861 0.0181 -0.1216 -0.0507 -4.77 <.0001 
I 0.1881 0.0857 0.0201 0.3561 2.19 0.0282 
O -0.0597 0.0083 -0.0759 -0.0434 -7.21 <.0001 
Q -0.0384 0.0236 -0.0846 0.0078 -1.63 0.1032 
S -6.3573 0.9988 -8.3149 -4.3998 -6.37 <.0001 
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Dependence Between Observations 
Based on Mountain Range Group 

8:38 Thursday, April 19, 2001 

The GENMOD Procedure


Model Information


Data Set WORK.NEWEUC 
Distribution Binomial 
Link Function Logit 
Dependent Variable Toad 
Observations Used 122 
Probability Modeled Pr (Toad = 1.0000) 
Missing Values 6 

Class Level Information


Class Levels Values


Rangegrp 8 CLARK DRIVE ELDO KING MCHI RIVE SHEE SPRI 

Response Profile


Ordered Level Ordered Value Count

1 1.0000 88 
2 0.0000 34 

Parameter Information 
Parameter Effect 

Prm1 Intercept 
Prm2 A 
Prm3 U 
Prm4 W 
Prm5 I 
Prm6 O 
Prm7 Q 
Prm8 S 

Criteria for Assessing Goodness of Fit 
Criterion DF Value Value/DF 
Deviance 114 55.5828 0.4876 
Scaled Deviance 114 55.5828 0.4876 
Pearson Chi-Square 114 74.4921 0.6534 
Scaled Pearson X2 114 74.4921 0.6534 
Log Likelihood -27.7914 

Algorithm Converged 
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Analysis of Initial Parameter Estimates 
Standard Wald 95% 

Parameter DF Estimate Error Confidence Limits Chi-Square Pr > ChiSq 
Intercept 1 357.1798 85.5390 189.5266 524.8331 17.44 <.0001 

A 1 1.8175 0.7135 0.4191 3.2158 6.49 0.0109 
U 1 -0.0086 0.0021 -0.0127 -0.0044 16.45 <.0001 
W 1 -0.0868 0.0211 -0.1281 -0.0455 16.99 <.0001 
I 1 0.1865 0.0635 0.0620 0.3109 8.62 0.0033 
O 1 -0.0601 0.0170 -0.0933 -0.0268 12.54 0.0004 
Q 1 -0.0383 0.0153 -0.0683 -0.0083 6.24 0.0125 
S 1 -6.4872 1.8972 -10.2056 -2.7687 11.69 0.0006 

Scale 0 1.0000 0.0000 1.0000 1.0000 

Note: The scale parameter was held fixed. 

GEE Model Information 
Correlation Structure Exchangeable 
Subject Effect Rangegrp (8 levels) 
Number of Clusters 8 
Clusters with Missing Values 4 
Correlation Matrix Dimension 55 
Maximum Cluster Size 53 
Minimum Cluster Size 4 

Algorithm Converged 

Analysis of GEE Parameter Estimates 
Empirical Standard Error Estimates 

Standard 
Parameter Estimate Error 95% Confidence Limits Z Pr > (Z) 
Intercept 367.1993 53.8241 261.7060 472.6926 6.82 <.0001 

A 1.8007 0.5507 0.7215 2.8800 3.27 0.0011 
U -0.0088 0.0009 -0.0106 -0.0070 -9.60 <.0001 
W -0.0893 0.0133 -0.1154 -0.0632 -6.71 <.0001 
I 0.1786 0.0210 0.1374 0.2197 8.51 <.0001 
O -0.0598 0.0089 -0.0772 -0.0425 -6.76 <.0001 
Q -0.0378 0.0239 -0.0847 0.0091 -1.58 0.1144 
S -6.2212 0.8184 -7.8252 -4.6173 -7.60 <.0001 
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Appendix 2 

SAS Statements for Standard Logistic Regression 

************ Comprehensive Final Model  *****************;

Options ps=255 ls=255;

Proc Corr data=neweuc;


 var A B C D E F G H I J K L M N O P Q R S T U V W X Y; 
run; 
Options ps=255 ls=150; 
Proc Logistic data = neweuc Descending;

 Model Toad = A B C D E F G H I J K L M N O P Q R S T U V W X Y
 / Selection = stepwise tech=newton details sle=0.30 sls=0.1

 Waldcl Waldrl Plcl Influence Iplot Lackfit Rsq CORRB ;
 output out=o1 predicted=pred difdev=dev difchisq=chi; 

run; 

Proc Print data=o1;
 var dev chi pred Toad; 

run; 

******************************************************************; 
**** Plotting *****************************************************; 
goptions reset=global gunit=pct noborder

 ftext=Swissb htext=2;* horigin=0.2 in vorigin=0.2 in; 

axis length=40 order=(0 to 2000 by 500) label=(justify=c ' Elevation (m) ');

axis2 length=40 order=(0 to 1) label=(justify=c angle=-270 ' Presence/Absence');

Symbol1 v=dot  c=black h=1;

Proc gplot data=o1;

Format Toad F1.0 Elev2 F4.0;


 Plot Toad * U /

                frame


 haxis=axis

 vaxis=axis2;


 Title '  ';

           Footnote1 j=c 'Figure 1. Presence(=1) and absence(=0) of the amphibians ';


 Footnote2 j=r '  ';

 Footnote3 j=r '  ';

 Footnote4 j=r '  ';


           Footnote5 j=r 'pg  21';

run; 
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************************************************************************;

***** Plotting for Diagnostic Check  ********************************;

goptions reset=global gunit=pct noborder


 ftext=Swissb htext=2 horigin=0.2 in vorigin=0.2 in; 

axis length=60;

axis2 length =60 label=(justify=c angle=-270 ' Deviance ');

Proc gplot data=o1;


 Plot Dev*Pred /

                frame


 haxis=axis

 vaxis=axis2;


                Symbol v=dot h=1.2 ;

 Title '  ';


           Footnote1 j=c 'Figure 2. Deviance (DIFDEV) values for the predicted probability for the study

area';

 Footnote2 j=r '  ';
 Footnote3 j=r '  ';
 Footnote4 j=r '  ';

           Footnote5 j=r 'pg'; 
run;

axis3 length=60 label=(justify=c angle=-270 ' Chi-Square');

Proc gplot data=o1;

* format Per_min F3.0;

 Plot chi*pred /

                frame


 haxis=axis

 vaxis=axis3;


                Symbol v=dot h=1.2;

 Title '  ';

           Footnote1 j=c ' Figure 3. Chi-square (DIFCHISQ) values for the predicted probability for the study 
area';

 Footnote2 j=r '  ';
 Footnote3 j=r '  ';
 Footnote4 j=r '  ';

           Footnote5 j=r 'pg'; 
run; 
***********************************************************************; 

**** Test for Collinearity for the independent variables in the final model  **********; 
Data O2;
   Set O1; /* O1 is the residual from the regression equation */

 W=Pred*(1-Pred); 
run;

Options ps=255 ls=100;

Proc Reg data = O2;


 Weight W;
 Model Toad = U W S I O A Q / TOL VIF; 

run; 
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*********** End of Test for Collinearity ****************************; 

**** Test for the dependence between observations ************************; 
Options ps=255 ls=100; 

Title ‘ Based on Watershed groups ‘; 
Proc Genmod data = neweuc ;

 Class WsGrp ;
 Model Toad = U W S I O A Q / D=B ;

              Repeated subject = Wsgrp / Type=exch; 
run; 

Title ‘ Based on Mountain Range groups ‘; 
Proc Genmod data = neweuc ;

 Class Rangegrp;
 Model Toad = U W S I O A Q / D=B ;

              Repeated subject = Rangegrp / Type=exch; 
run; 
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Appendix 3 

MARS Output 

MARS Version 1.0.0.14 

Reading Data, up to 292142 Records. 

Records Read: 122 
Records Kept in Learning Sample:  122 

Learning Sample Statistics
(For variable description see Table 1) 

Variable Mean SD N Sum 

Toad 0.721 0.450 122 88.000 

V 659.172 41.397 122 80418.953 

W 3989.784 36.474 122 486753.597 

U 1134.431 463.159 122 138400.552 

H 9.180 20.076 122 1120.000 

B 52.828 35.958 122 6445.000 

D 35.492 35.258 122 4330.000 

F 57.131 40.272 122 6970.000 

E 17.500 32.367 122 2135.000 

X 24.754 37.795 122 3020.000 

G 29.303 35.199 122 3575.000 

Y 23.402 36.592 122 2855.000 

J 2.754 0.805 122 336.000 

I 6.189 13.033 122 755.000 

T 8.094 0.522 122 987.510 

L 6.895 11.238 122 841.200 

M 45.277 84.631 122 5523.800 

Q 36.163 25.985 122 4411.900 

N 31.311 33.763 122 3820.000 

Continued.... 
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Learning Sample Statistics, Continued 

Variable Mean SD N Sum 

K 36.221 35.146 122 4419.000 

Q 23.336 31.104 122 2847.000 

P 33.221 35.112 122 4053.000 

R 11.484 23.568 122 1401.000 

S -0.005 0.383 122 -0.659 

A 1.981 0.765 122 241.701 

C 2.940 0.899 122 358.620 

Ordinal Response 
Variable min Q25 Q50 Q75 max 

Toad  0  0  1  1  1  

Ordinal Predictor Variables: 25 
Variable min Q25 Q50 Q75 max 

V 586.21 632.86 641.92 699.45 733.08 

W 3927.38 3953.22 3990.68 4019.19 4080.23 

U 219.00 620.00 1256.00 1515.00 1735.00 

H 0.00 0.00 0.00 10.00 100.00 

B 10.00 20.00 50.00 90.00 100.00 

D 0.00 0.00 20.00 70.00 100.00 

F 0.00 10.00 70.00 100.00 100.00 

E 0.00 0.00 0.00 20.00 100.00 

X 0.00 0.00 0.00 30.00 100.00 

G 0.00 0.00 10.00 100.00 100.00 

Y 0.00 0.00 0.00 30.00 100.00 

J 1.00 2.20 2.90 3.10 5.00 

I 0.00 0.00 0.00 10.00 80.00 

T 5.55 7.80 8.10 8.40 9.37 

L 0.20 1.40 3.00 9.10 92.80 

M 0.20 1.00 2.60 60.40 458.00 

Q 0.00 14.30 30.60 56.00 99.00 

N 0.00 0.00 17.00 60.00 100.00 

K 0.00 0.00 27.00 70.00 100.00 

Continued.... 
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Ordinal Predictor Variables: 25, Continued 

Variable min Q25 Q50 Q75 max 

Q 0.00 0.00 10.00 30.00 100.00 

P 0.00 0.00 20.00 60.00 100.00 

R 0.00 0.00 0.00 10.00 100.00 

S -1.05 -0.26 -0.08 0.20 0.96 

A 1.00 1.00 1.91 2.65 3.66 

C 1.00 2.52 3.17 3.60 4.45 

121-fold cross validation used to estimate DF. 
Estimated optimal DF(8) = 1.182 with (estimated) PSE = 0.124 

Forward Stepwise Knot Placement 
BasFn(s) GCV IndBsFns EfPrms Variable Knot Parent BsF 

0 0.204 0.0 1.0 

1 0.185 1.0 2.8 W 3927.375 

2 0.164 2.0 4.6 U 219.000 

3 0.152 3.0 6.4 O .584602E-06 

4 0.145 4.0 8.2 S -1.053 

5 0.142 5.0 9.9 C 1.000 

6 0.138 6.0 11.7 Q .191016E-05 

7 0.136 7.0 13.5 I -.192323E-06 

8 0.139 8.0 15.3 T 5.550 

9 0.142 9.0 17.1 H -.142210E-06 

10 0.145 10.0 18.9 A 1.000 

11 0.148 11.0 20.7 V 586.205 

12 0.152 12.0 22.5 D -.955236E-06 

13 0.155 13.0 24.2 X .954165E-06 

14 0.159 14.0 26.0 J 1.000 

15 0.164 15.0 27.8 F .376499E-05 

Final Model 
(After Backward Stepwise Elimination) 

Basis Fun 

0 

1 

2 

Coefficient 

1.69  

-0.005 

-0.405123E-03 

Variable 

W 

U 

Parent Knot 

3927.375 

219.00 

Continued.... 
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Final Model, Continued 

Basis Fun Coefficient Variable Parent Knot 

3 -0.003 O 0.584602E-06 

4 -0.302 S -1.053 

5 0.111 C 1.000 

6 -0.004 Q 0.0191016E-05 

7 0.005 I -0.192323E-06 

Piecewise Linear GCV = 0.136, #efprms=13.518 

ANOVA Decomposition on 7 Basis Functions 
fun std. dev. -gcv #bsfns #efprms Variable Description 

1 0.192 0.173 1 1.788 W Latitude 

2 0.187 0.153 1 1.788 U Elevation 

3 0.082 0.139 1 1.788 O Vegetation Over Water 

4 0.115 0.141 1 1.788 S Water Salinity 

5 0.099 0.142 1 1.788 C Riparian 

6 0.099 0.141 1 1.788 Q Vegetation Over Adjacent Land 

7 0.069 0.138 1 1.788 I Bedrock Substrate Cover 

Piecewise Cubic Fit on 7 Basis Functions, GCV = 0.136 

Relative Variable Importance 
Variable Importance -gcv Variable Description 

2 W 100.000 0.173 Latitude 

3 U 68.489 0.153 Elevation 

25 C 39.559 0.142 Riparian 

23 S 38.052 0.141 Water Salinity 

17 Q 36.812 0.141 Vegetation Cover (< 1 m high) Over Adjacent Land 

20 O 25.756 0.139 Vegetation Cover Over Water 

13 I 19.493 0.138 Bedrock Substrate Cover 

1 V 0.000 0.136 Longitude 

4 H 0.000 0.136 Linear Extent of Channel with Vegetation 

5 B 0.000 0.136 Surface Water Linear Extent 

6 D 0.000 0.136 Emergent-type vegetation (Typha, Eleocharis, Scirpus, Mimulus, 
Anemopsis; Juncus & Carex) inside Stream Channel


7 F 0.000 0.136 Riparian Shrubs/Herbs (Baccharis, Pluchea, Vitis, Allenrolfea,

Equisetum; Juncus or Carex) outside Stream Channel


Continued.... 
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Relative Variable Importance, Continued 

Variable Importance -gcv Variable Description 

8 E 0.000 0.136 Native Riparian Trees (Salix, Populus, Fraxinus) 

9 X 0.000 0.136 Tamarix spp. (exotic plant) in 400-m Area 

10 G 0.000 0.136 Phreatophytes (Prosopis, Chilopsis) 

11 Y 0.000 0.136 Tamarix spp. (exotic plant) in 40-m Segments 

12 J 0.000 0.136 Predominate substrate grain size 

14 T 0.000 0.136 pH 

15 L 0.000 0.136 Water Depth 

16 M 0.000 0.136 Wetted Perimeter Width 

18 N 0.000 0.136 Plot Substrate Size, for Granular Substrate 

19 K 0.000 0.136 Submerged or Floating Vegetation Cover 

21 P 0.000 0.136 Emergent Vegetation within 15 cm of point 

22 R 0.000 0.136 Bedrock Substrate Cover 

24 A 0.000 0.136 Plot Surface Water Area 

Basis Functions 

BF1 = max (0, W - 3927.375); Latitude 

BF2 = max (0, U - 219.000); Elevation 

BF3 = max (0, O - .584602E-06); Vegetation Over Water 

BF4 = max (0, S + 1.053); Water Salinity 

BF5 = max (0, C - 1.000); Riparian 

BF6 = max(0, Q - .191016E-05); Vegetation Over Adjacent Land 

BF7 = max(0, I + .192323E-06); Bedrock Substrate Cover 

Y = 1.690 - 0.005 * BF1 - .405123E-03 * BF2 - 0.003 * BF3 - 0.302 * BF4 + 0.111 * BF5 - 0.004 * BF6 + 0.005 * 
BF7; 

model DEPVAR = BF1 BF2 BF3 BF4 BF5 BF6 BF7; 

Ordinary Least Squares Results 

N: 122.000 R-Squared: 0.465 

Mean Dep Var: 0.721 Adj. R-Squared 0.432 

Uncentered R-squared = R-0 Squared: 0.851 
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Parameter Estimate S.E. T-ratio P-value 

Constant 1.690 0.209 8.082 .745404E12 

Basis Function 1 -0.005 .881709E-03 -5.981 260884E-07 

Basis Function 2 -.405123E-03 .934568E-04 -4.335 .316045E-04 

Basis Function 3 -0.003 0.001 -2.431 0.017 

Basis Function 4 -0.302 0.104 -2.902 0.00 

Basis Function 5 0.111 0.037 2.966 0.004 

Basis Function 6 -0.004 0.001 -2.850 0.005 

Basis Function 7 0.005 0.002 2.237 0.027 

F-statistic = 14.128 S.E. of Regression = 0.339 

P-value = .424771E-12 Residual Sum of Squares = 13.132 

[MDF, NDF] = [7,114] Regression Sum of Squares = 11.392 
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